Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cengiz Arıcı, ${ }^{\text {a* }}$ Cumhur Kırılmıș, ${ }^{\text {b }}$ Murat Koca ${ }^{\text {b }}$ and Frank W. Heinemann ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Engineering Physics, Hacettepe University, Beytepe 06800, Ankara, Turkey,
${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Fırat University, 23169, Elazıg,
Turkey, and ${ }^{\text {c Institut für Anorganische Chemie, }}$ Universität Erlangen-Nuernberg, D-91058 Erlangen, Germany

Correspondence e-mail: arici@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.118$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(3-Methyl-3-phenylcyclobutyl)(naphtho[2,1-b]-furan-2-yl)methanone

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{2}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions result in a three-dimensional supramolecular network.

Comment

The naphthofuran skeleton is present in many natural products of biological importance and its synthetic derivatives display diverse biological activity. Nevertheless, little is known about their fluorescence properties and potential utility as suitable fluorescent markers. Arene ring-fused furans have attracted widespread interest in view of their presence in natural products and their biological and pharmacological activities (Piloto et al., 2005).

Compared with benzofurans, reports on the synthesis of naphthofurans and benzodifurans are rather limited, though many of the extended arenofurans exhibit interesting biological properties and have potential applications as fluorescent dyes and probes, and as photosensitizers. The title compound, (I), was synthesized by the base-catalyzed cyclization reaction of the corresponding o-alkoxybenzoylarene derivative (Park \& Jeong, 2005).

Received 24 May 2006
Accepted 6 June 2006

The naphtho[2,1-b]furan-2-yl part of (I) is composed of three rings, $A(\mathrm{O} 2 / \mathrm{C} 13-\mathrm{C} 15 / \mathrm{C} 24), B(\mathrm{C} 15 / \mathrm{C} 16 / \mathrm{C} 21-\mathrm{C} 24)$ and C (C16-C21). In the cyclobutane ring, the $\mathrm{C} 9 / \mathrm{C} 7 / \mathrm{C} 10$ plane forms a dihedral angle of $28.90(1)^{\circ}$ with the C10/C11/C9 plane. This is larger than previously reported angles of 23.82 (3) ${ }^{\circ}$ (Kırılmış et al., 2005) and 23.5 (4) ${ }^{\circ}$ (Swenson et al., 1997). The dihedral angle between the C1-C6 plane and the plane through rings A, B, C and atoms C 12 and O 1 is 78.65 (6) ${ }^{\circ}$.
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions have been reported as important in the generation of supramolecular architectures (Yilmaz et al., 2005). There are three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions in the crystal structure (Table 1 and Fig. 2). These interactions lead to close packing between neighbouring molecules. There are also two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions: $\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{Cg} 1^{i}=2.78 \AA$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots C g 2^{\mathrm{i}}=2.82 \AA$, where $C g 1$ and $C g 2$ are the centroids of rings A and B, respectively [symmetry code: (i) 1
$+x, y, z]$. In (I), the packing of the molecules is additionally reinforced by a $\pi-\pi$ stacking interaction between rings A and C, with a $C g 1 \cdots C g 3^{\mathrm{i}}$ distance of 3.5278 (1) \AA, where $C g 3$ is the centroid of ring C.

Experimental

2-Hydroxy-1-naphthaldehyde $(1.89 \mathrm{~g}, 11 \mathrm{mmol})$, potassium carbonate $(2.07 \mathrm{~g}, 15 \mathrm{mmol})$ and acetonitrile $(150 \mathrm{ml})$ were placed in a 500 ml two-necked flask with a reflux condenser. The mixture was stirred for 2 h at room temperature. 1-Phenyl-1-methyl-3-(2-chloro-1oxoethyl)cyclobutane ($2.225 \mathrm{~g}, 10 \mathrm{mmol}$) in acetonitrile (25 ml) was then added dropwise over a period of about 30 min and refluxed for 8 h . The course of the reaction was monitored by IR spectroscopy. The solvent was then removed under reduced pressure, the residue was extracted with diethyl ether and the ether phase dried over magnesium sulfate. After filtration and removal of the solvent under reduced pressure, compound (I) was crystallized from acetone (yield \%76, m.p. 453-454 K).

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{2}$
$M_{r}=340.40$
Triclinic, $P \overline{1}$
$a=5.9316$ (4) Å
$b=11.969$ (1) \AA
$c=13.760(1) \AA$
$\alpha=112.064$ (5) ${ }^{\circ}$
$\beta=97.270(6)^{\circ}$
$\gamma=96.165(6)^{\circ}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.987, T_{\text {max }}=0.999$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=1.05$
3929 reflections
295 parameters
Only H-atom coordinates refined

$$
V=885.23(12) \AA^{3}
$$

$Z=2$
$D_{x}=1.277 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Block, colorless
$0.35 \times 0.14 \times 0.10 \mathrm{~mm}$

16640 measured reflections
3929 independent reflections
2986 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.1^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0631 P)^{2} \\
&+0.2126 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\left(\AA,{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.97(2)$	$2.53(2)$	$3.482(2)$	$165(2)$
C14-H14 $^{\mathrm{Hii}}$	$0.97(2)$	$2.49(2)$	$3.341(2)$	$146(2)$
C17-H17 $^{\mathrm{ii}} \mathrm{O}^{\mathrm{ii}}$	$0.97(2)$	$2.49(2)$	$3.381(2)$	$153(2)$

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+2,-y+2,-z+2$.
H atoms were located in difference maps and their coordinates refined freely $[\mathrm{C}-\mathrm{H}=0.96(2)-1.03(2) \AA]$. $U_{\text {iso }}(\mathrm{H})$ values were set at $0.04 \AA^{2}$.

Data collection: COLLECT (Bruker-Nonius, 2002); cell refinement: EVALCCD (Bruker-Nonius, 2002); data reduction: EVALCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; mole-

Figure 1
Plot of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

Figure 2
A view of the unit-cell contents. Dashed lines indicate hydrogen bonds.
cular graphics: SHELXTL and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

Bruker-Nonius (2002). COLLECT and EVALCCD. Bruker AXS Inc., Madison, Wisconsin, USA.
Kırılmış, C., Koca, M., Arıcı, C. W., Heinemann, F. W. \& Ahmedzade, M. (2005). Acta Cryst. E61, o1176-o1177.

Park, K. K. \& Jeong, J. (2005). Tetrahedron, 61, 545-553.
Piloto, A. M., Costa, P. G. S. \& Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. Version 2.06. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Swenson, D. C., Yamamoto, M. \& Burton, D. J. (1997). Acta Cryst. C53, 14451447.

Yilmaz, V. T., Kazak, C., Kirilmis, C., Koca, M. \& Heinemann, F. W. (2005). Acta Cryst. C61, o438-o441.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

